import random as rd class Particle(): def __init__(self, nb_vehicles:int=10, delta_t:int=60, nb_of_ticks:int=72, a_min=-100, a_max=100, alpha=0.1): # Problem specific attributes self.nb_vehicles = nb_vehicles # Number of vehicles handles for the generations of position x self.delta_t = delta_t # delta_t for update purposes self.nb_of_ticks = nb_of_ticks # Accounting for time evolution of the solution (multiplied by delta_t) self.socs= self.generate_state_of_charges() # States of charge (initial, requested) #TODO: Move that to MOPSO (using one batch of times for multiples particles) self.times = self.generate_times() # Times (arrived, leaving) # Minima and maxima of a position value self.a_min = a_min self.a_max = a_max # Limitation of the velocity self.alpha = alpha self.r1 = [rd.randrange(0,101,1)/100 for _ in range(self.nb_vehicles)] # Variable trust of oneself self.r2 = [rd.randrange(0,101,1)/100 for _ in range(self.nb_vehicles)] # Variable trust of other particles # Particle attributes self.x = self.generate_position() # Position Vector (correspond to one solution for the problem) self.v = self.generate_velocity() # Velocity self.p_best = self.x # Best known position (starting with initial position x) self.eval = 0 #TODO: self.evaluate() def update_position(self): for i in range(self.nb_vehicles): new_pos_i = self.x[i] + self.v[i] self.x[i] = new_pos_i def update_velocity(self, leader, c1, c2, w=0.4): for i in range(self.nb_vehicles): new_vel_i = w * self.v[i] + (self.p_best - self.x[i]) * c1 * self.r1[i] + (leader - self.x[i]) * c2 * self.r2[i] self.v[i] = new_vel_i def generate_state_of_charges(self): socs = [] # We ensure soc_req is greater than what the soc_init is (percentage transformed into floats) for _ in range(self.nb_vehicles): soc_init = rd.randrange(0,100,1) soc_req = rd.randrange(soc_init+1, 101,1) socs.append((soc_init/100, soc_req/100)) return socs def generate_times(self): times = [] for _ in range(self.nb_vehicles): # Minumun, we have one tick of charging during simulation t_arrived = rd.randrange(0, (self.nb_of_ticks * self.delta_t - self.delta_t) +1, self.delta_t) t_leaving = rd.randrange(t_arrived + self.delta_t, (self.nb_of_ticks*self.delta_t)+1, self.delta_t) times.append((t_arrived,t_leaving)) return times #TODO: Modify for uses of ticks def generate_position(self): pos = [] for _ in range(self.nb_of_ticks): x_tick = [] for _ in range(self.nb_vehicles): x_tick.append(rd.randrange(self.a_min, self.a_max +1, 1)) pos.append(x_tick) return pos def generate_velocity(self): vel = [] vel_coeff = self.a_max - self.a_min for _ in range(self.nb_of_ticks): v_tick = [] for _ in range(self.nb_vehicles): v_tick.append(rd.randrange(-vel_coeff, vel_coeff +1, 1) * self.alpha) vel.append(v_tick) return vel # Function objective def evaluate(self, elec_prices, max_power): pass # Calculate the price of the electricity consumption in the grid SUM(1_to_T)(Epsilon_t * A_t * delta_t) def f1(self, elec_prices): result = 0 for tick in range(self.nb_of_ticks): grid_stress_tick = self.get_current_grid_stress(tick) result += elec_prices[tick] * grid_stress_tick * self.delta_t return result #TODO: Modify for uses of ticks # User's insatisfaction def f2(self): result = 0 for i in range(self.nb_vehicles): soc_req_i = self.socs[i][1] result += max(0, ) # Network Stress def f3(self): current_max = 0 for tick in range(self.nb_of_ticks): current_max = max(current_max, self.get_current_grid_stress(tick)) return current_max #TODO: Modify for uses of ticks def get_current_grid_stress(self, tick:int): assert tick < self.nb_of_ticks # Make sure the tick exist in the position x current_grid_stress = 0 for i in range(self.nb_vehicles): current_grid_stress += self.x[tick][i] return current_grid_stress