import random as rd class Particle(): def __init__(self, nb_vehicles:int=10, delta_t:int=60, sim_duration:int=4320, a_min=-100, a_max=100, alpha=0.1): # Problem specific attributes self.nb_vehicles = nb_vehicles # Number of vehicles handles for the generations of position x self.delta_t = delta_t # delta_t for update purposes self.sim_duration = sim_duration # max duration and number of updates (multiplied by delta_time) self.socs= self.generate_state_of_charges() # States of charge (initial, requested) self.times = self.generate_times() # Times (arrived, leaving) # Minima and maxima of a position value self.a_min = a_min self.a_max = a_max # Limitation of the velocity self.alpha = alpha self.r1 = [rd.randrange(0,101,1)/100 for _ in range(self.nb_vehicles)] # Variable trust of oneself self.r2 = [rd.randrange(0,101,1)/100 for _ in range(self.nb_vehicles)] # Variable trust of other particles # Particle attributes self.x = self.generate_position() # Position Vector (correspond to one solution for the problem) self.v = self.generate_velocity() # Velocity self.p_best = self.x # Best known position (starting with initial position x) def update_position(self): for i in range(self.nb_vehicles): new_pos_i = self.x[i] + self.v[i] self.x[i] = new_pos_i def update_velocity(self, leader, c1, c2, w=0.4): for i in range(self.nb_vehicles): new_vel_i = w * self.v[i] + (self.p_best - self.x[i]) * c1 * self.r1[i] + (leader - self.x[i]) * c2 * self.r2[i] self.v[i] = new_vel_i def generate_state_of_charges(self): socs = [] # We ensure soc_req is greater than what the soc_init is (percentage transformed into floats) for _ in range(self.nb_vehicles): soc_init = rd.randrange(0,100,1) soc_req = rd.randrange(soc_init+1, 101,1) socs.append((soc_init/100, soc_req/100)) return socs def generate_times(self): times = [] for _ in range(self.nb_vehicles): # Minumun, we have one tick of charging during simulation t_arrived = rd.randrange(0, (self.sim_duration - self.delta_time) +1, self.delta_time) t_leaving = rd.randrange(t_arrived + self.delta_time, self.sim_duration+1, self.delta_time) times.append((t_arrived,t_leaving)) return times def generate_position(self): pos = [] for _ in range(self.nb_vehicles): pos.append(rd.randrange(self.a_min, self.a_max +1, 1)) return pos def generate_velocity(self): vel = [] vel_coeff = self.a_max - self.a_min for _ in range(self.nb_vehicles): vel.append(rd.randrange(-vel_coeff, vel_coeff +1, 1) * self.alpha) return vel