diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..1e73546 --- /dev/null +++ b/.gitignore @@ -0,0 +1,6 @@ +# Scripts +main.py + +# UV Environment +.python-version +.venv \ No newline at end of file diff --git a/particle.py b/particle.py index 56a9987..d8d748f 100644 --- a/particle.py +++ b/particle.py @@ -1,13 +1,15 @@ import random as rd class Particle(): - def __init__(self, nb_vehicles:int=10, delta_t:int=60, sim_duration:int=4320, a_min=-100, a_max=100, alpha=0.1): + def __init__(self, nb_vehicles:int=10, delta_t:int=60, nb_of_ticks:int=72, a_min=-100, a_max=100, alpha=0.1): # Problem specific attributes self.nb_vehicles = nb_vehicles # Number of vehicles handles for the generations of position x self.delta_t = delta_t # delta_t for update purposes - self.sim_duration = sim_duration # max duration and number of updates (multiplied by delta_time) + self.nb_of_ticks = nb_of_ticks # Accounting for time evolution of the solution (multiplied by delta_t) self.socs= self.generate_state_of_charges() # States of charge (initial, requested) + + #TODO: Move that to MOPSO (using one batch of times for multiples particles) self.times = self.generate_times() # Times (arrived, leaving) # Minima and maxima of a position value @@ -23,6 +25,7 @@ class Particle(): self.x = self.generate_position() # Position Vector (correspond to one solution for the problem) self.v = self.generate_velocity() # Velocity self.p_best = self.x # Best known position (starting with initial position x) + self.eval = 0 #TODO: self.evaluate() def update_position(self): for i in range(self.nb_vehicles): @@ -47,20 +50,62 @@ class Particle(): times = [] for _ in range(self.nb_vehicles): # Minumun, we have one tick of charging during simulation - t_arrived = rd.randrange(0, (self.sim_duration - self.delta_time) +1, self.delta_time) - t_leaving = rd.randrange(t_arrived + self.delta_time, self.sim_duration+1, self.delta_time) + t_arrived = rd.randrange(0, (self.nb_of_ticks * self.delta_t - self.delta_t) +1, self.delta_t) + t_leaving = rd.randrange(t_arrived + self.delta_t, (self.nb_of_ticks*self.delta_t)+1, self.delta_t) times.append((t_arrived,t_leaving)) return times + #TODO: Modify for uses of ticks def generate_position(self): pos = [] - for _ in range(self.nb_vehicles): - pos.append(rd.randrange(self.a_min, self.a_max +1, 1)) + for _ in range(self.nb_of_ticks): + x_tick = [] + for _ in range(self.nb_vehicles): + x_tick.append(rd.randrange(self.a_min, self.a_max +1, 1)) + pos.append(x_tick) return pos def generate_velocity(self): vel = [] vel_coeff = self.a_max - self.a_min - for _ in range(self.nb_vehicles): - vel.append(rd.randrange(-vel_coeff, vel_coeff +1, 1) * self.alpha) - return vel \ No newline at end of file + for _ in range(self.nb_of_ticks): + v_tick = [] + for _ in range(self.nb_vehicles): + v_tick.append(rd.randrange(-vel_coeff, vel_coeff +1, 1) * self.alpha) + vel.append(v_tick) + return vel + + # Function objective + def evaluate(self, elec_prices, max_power): + pass + + # Calculate the price of the electricity consumption in the grid SUM(1_to_T)(Epsilon_t * A_t * delta_t) + def f1(self, elec_prices): + result = 0 + for tick in range(self.nb_of_ticks): + grid_stress_tick = self.get_current_grid_stress(tick) + result += elec_prices[tick] * grid_stress_tick * self.delta_t + return result + + #TODO: Modify for uses of ticks + # User's insatisfaction + def f2(self): + result = 0 + for i in range(self.nb_vehicles): + soc_req_i = self.socs[i][1] + result += max(0, ) + + # Network Stress + def f3(self): + current_max = 0 + for tick in range(self.nb_of_ticks): + current_max = max(current_max, self.get_current_grid_stress(tick)) + return current_max + + #TODO: Modify for uses of ticks + def get_current_grid_stress(self, tick:int): + assert tick < self.nb_of_ticks # Make sure the tick exist in the position x + current_grid_stress = 0 + for i in range(self.nb_vehicles): + current_grid_stress += self.x[tick][i] + return current_grid_stress \ No newline at end of file